Time Traveling Queries for Faster Program Exploration

Maximilian Willembrinck

Centre de Recherche en Informatique, Signal et Automatique de Lille

Presentation Agenda

Experiment	User Study Description
	Results

Context - The Debugging Process

Zeller, 2009: "Why programs fail: a guide to systematic debugging"

Context - Understanding a program behavior

Manually exploring a program execution

Stepping

Manually exploring a program execution

Breakpoints

Manually exploring a program execution

Time-Traveling Debuggers

Helps with the "Missing critical information" problem.

Still tedious

Exploring a program execution

Scriptable Debuggers

Exploring a program execution

Basic stepping, breakpoints, scriptable debugger, time-traveling, etc.

Problem Summary

Program Exploration is ...

- Manual/Tedious
- Imprecise and miss critical information
- Translating debugging questions -> debugging actions is difficult

Presentation Agenda

Experiment	User Study Description
	Results

Research Question

"Can we **express** general program comprehension **questions** as **queries** over programs executions, and does that **improve** program exploration regarding developers' efforts, time spent and precision, **compared to standard debugging tools**?"

Time-Traveling Queries

Presentation Agenda

Experiment	User Study Description
Experiment	Results

Time Traveling Queries

→ Programmatic requests for execution data

→ Automatically traverse program states...

→ Enabling direct time travel to relevant program states.

Time-Traveling Queries

Key supporting components

1. Time-Traveling Debugger

Advances or restores an execution to any point in time

2. ProgramStates

An iterable collection of all the program states

3. Query

A programmatic request of execution data

1. Time-Traveling Debugger

- As an **extension** of Pharo 9.0 **debugger**
- Allows to **reverse** a program's execution (step backwards)
- Replay-based Implementation

2. ProgramStates

- → A generator of ProgramState
 - Iterable object that exposes an API to retrieve execution data from every state of the program (during its iteration)
 - Every iteration of the loop advances execution by one step
 - No trace(recording) is required to answer queries.

3. Query

Declared like this

From where to collect?

Which states are relevant?

```
allReturnValuesQuery := Query
    from: programStates
    select: [ :cs | cs isMethodReturn ]
    collect: [ :cs |
    Dictionary newFrom: {
        (#receiverClass -> cs receiverClass).
        (#methodSelector -> cs methodSelector).
        What to Collect?
        (#returnValue -> cs methodReturnValue) } ].
How to Collect
```

the data?

Time-Traveling Query Usage

GLineTes		te se) pe se) [si	ethod stAsGLin erformTe elf setUp			Pack	age	↓ª		Seeker Stepping (Control				
GLineTes GLineTes GLineTes	st (TestCa st (TestCa	te se) pe se) [si	stAsGLin erformTe				age			occepping.	Joint of				
GLineTes GLineTes	st (TestCa st (TestCa	se) pe se) [se	rformTe			Coom				4			~		-
GLineTes	st (TestCa	se) [se		st	Geometry-Tests					PrevBytecode	Advance Down	Back Up	NextBytecode	Restart	To En
			elf setUp	GLineTest (TestCase) performTest			SUnit-Core				Scripting				
FullBlock	kClosure (DischClassen		. self per	rformTes	st]SUnit	-Core			Query					
		BIOCKCIOSUEI	isure:			Kerne	el		~	No Query executed Case sensitive filter (Press enter to apply)					
		2 S	÷	¢	5		_	~		Case ser	ISILIVE IIILEI	(FIESS)	enter to app	(y)	
Proceed	Into O	ver Through	Run to	Restart	_	Where is?	Create	Advanced Step							
2 3	sel [.]	Do it Do it Debug it Print it Profile it Debug it in Code seard Run to Next call ir To return To method	:h n receive	第D 企業D 第I 第P 企業D		d: 3 s: lir						finish, f	s the executic for every <ins< td=""><td>tance cre</td><td>ation</td></ins<>	tance cre	ation
		 Next call in class Next instance creation SeekerOueries 			Mes	Hessages			•	Showing ExecutedE	0 results. Bytecode: 203	perform	oonds to the r ning the obje r's point of vi	ct instan	
		Q Find		ЖF	· · · ·	0	reations		• *	All Instance	s Creation				
a GLineTes	St (OLINE	Copy		#F #C		CV.			• *	All Instances Creation of class named as selection					
• Type		K Cut		жC ЖX	<> Assi	gnment	s - Gene	ral	1 4	All Instance	s Creation of	subclas	sses of Exce	otion	

Query from: programStates select: X collect: Y

i: program state (i)

Query results

Time-Traveling from Results

time-index

22

Presentation Agenda

Queries for program comprehension

List of Time-Traveling queries

I

Messages.

- I.1 Find all messages sent during the execution.
- I.2 Find all messages, with a given selector, sent during the execution.
- I.3 Find all received messages.

II Instances Creation.

- II.1 Find all instance creations.
- II.2 Find all instance creations of a class with a given name.
- II.3 Find all instance creations of exceptions.

III Assignments - Object Centric.

- III.1 Find all assignments of instance variables for the receiver of the currently executed method.
- III.2 Find all assignments of instance variables for a particular instance.
- III.3 Find all assignments of a given instance variable for the receiver of the currently executed method.

IV Assignments - General.

- IV.1 Find all assignments of variables with a given name.
- IV.2 Find all assignments of any variable.
- IV.3 Find all assignments of instance variables for instances of a given class.

Queries for program comprehension

Based on questions from the literature

[Sillito, 2006] [Kubelka, 2014]

- [13.] When during the execution is this method called?
- [14.] Where are instances of this class created?
- [15.] Where is this variable or data structure being accessed?
- [19.] What are the values of these arguments at run time?
- [20.] What data is being modified in this code?
- [32.] Under what circumstances is this method called or exception thrown?

Time-Traveling from results >>> Less "manual and tedious" traversal

Presentation Agenda

User Study - Queries for Debugging

Evaluated our **Queries** approach **vs Standard** Debugging Techniques, for **program comprehension tasks**:

Do Time Traveling Queries ...

- 1. Improve correctness?
- 2. Reduce the employed time?
- 3. Reduce the number of debugging actions?

(Versus Standard Debugging Tools)

User Study - Experiment Design

- → Quantitative experiment
- → Repeated Measures Design (Within-subject)
- → 34 Participants.
- → Session of **90 minutes**, solving program comprehension tasks, using:
 - Time-Traveling Queries.
 - Standard Debugging Tools
- → Measure the effect of: "TTQs"
 - On: Participant Score, Time, Debugging Actions
- → Followed by Qualitative Survey

Experiment Tasks. From "simpler" ...

→ How many times is the method #atEnd of the object 'generator' is called? and from which methods?

testAtEnd

```
| generator |
generator := self numbersBetween: 1 and: 3.
self deny: generator atEnd.
generator next.
self deny: generator atEnd.
generator next.
self deny: generator atEnd.
generator next.
self assert: generator atEnd
```

Experiment Tasks. To less "simple"...

 → What are the different values of the `pc` instance variable of the first `newContext` object during this test?

testSteppingReturnSelfMethod

[newContext]
aMethodContext := Context
sender: thisContext
receiver: SimulationMock new
method: (SimulationMock >>#exampleSelfReturnCall)
arguments: #().

aMethodContext step.
aMethodContext stepIntoQuickMethod: true.
newContext := aMethodContext step.

"We're in the quick method now, it should be steppable" self assert: newContext sender identicalTo: aMethodContext. self assert: newContext willReturn.

newContext := newContext step.
self assert: newContext identicalTo: aMethodContext

Presentation Agenda

Participants Score

Participants Time

Time to complete all 'Control' and 'TTQs' tasks.

Participants Debugging Actions

Count of debugging actions of participants

Results Summary

Qualitative Survey

Qualitative Survey

SeekerDebugger with TTQs evaluation

Experiment Conclusion

- We can express general program comprehension questions as queries over programs executions.
- Results show that TTQs improve program exploration regarding developers' efforts, time spent and precision, compared to standard debugging tools.
- Even with little instruction time for participants, the results were positive.
- Current TTQs don't cover the complete set of problems developers face during their debugging sessions.

Summary

- Different tools and methodologies for program understanding.
- Program exploration using interactive debuggers remains difficult and tedious.
- Proposed TTQs to improve exploration and comprehension.
- Controlled experiment to evaluate our solution.
- With TTQs, developers perform program comprehension tasks more accurately, faster, and with less effort than with standard debugging tools.
- We will continue Time-Traveling Queries research:
 - New relevant queries
 - Improving Time-Traveling Debugger limitations.

