
Debugging Scientific Software

Dorian Leroy

Inria, DiverSE

December 15, 2021



Scientific software: what is it and why is it important?

Scientific computing
Use of advanced computing capabilities to solve complex problems, aiming to predict
the behavior or outcome of a system, man-made or otherwise.

Why is it important?
Aerospace engineering, mechanical engineering, material science, chemistry, medicine
and many more disciplines, but also...
Basis of scientific findings shaping policy regarding wicked problems such as
COVID-19 or climate change.

1 / 24



The engineering of scientific software

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

2 / 24



The engineering of scientific software

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

S

S N

N SE

Stakeholders:

Scientists
Numerical Analysts
Software Engineers

2 / 24



The engineering of scientific software

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

Theories

Mathematical Model

Observations

S

Scientists develop a mathematical model,
i.e. a continuous numerical model
(e.g. a system of integro-differential equations)

2 / 24



The engineering of scientific software

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

Discretization 
Method

Mathematical Model

Numerical Scheme
S N

Numerical analysts discretize the mathematical
model into a numerical scheme computing a
numerical solution given... 

discretization of the domain (e.g. space, time),
initial state (e.g. initial temperature), and
inputs from environment (e.g. rainfalls).

2 / 24



The engineering of scientific software

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE SE V-Model

Software engineering concerns tackled as part of the SE V-Model

Stakeholders 
Requirements

Detailed 
Design

Global 
Design

Software
Requirements

Stakeholders 
Requirements

Implementation

Numerical Scheme

SE Tools & 
Methods N SE

Scientific 
Software 

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Implementation
Testing

Unit & Integration Testing

Scientific 
Software 

Numerical Scheme

N SE

2 / 24



The engineering of scientific software

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

Discretization 
Testing

System Testing
Mathematical Model

S N

Scientific 
Software 

Aim: ensure that the numerical scheme a correct discretization of the mathematical model 

2 / 24



The engineering of scientific software

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

Model Testing
Acceptance Testing

Observations

Scientific 
Software 

S

Aim: quantify disagreement between numerical solutions and experimental data

2 / 24



Language matters! Power comes with responsibility!

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

Configuration languages
(e.g. FloPy)

Continuous mathematical languages
(e.g. Mathematica, MATLAB)

Discrete mathematical languages
(e.g. NabLab, SciPy, Julia)

Languages for scientific software 
(e.g. C++, Fortran)

We investigated the impact of language choice through the balance of
responsibilities between language users and language designers.

3 / 24



Language matters! Power comes with responsibility!

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Theories

Discretization 
Method

Implementation
Testing

Unit & Integration Testing

Stakeholders 
Requirements

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

SE Tools & 
Methods N SE

Configuration languages
(e.g. FloPy)

Continuous mathematical languages
(e.g. Mathematica, MATLAB)

Discrete mathematical languages
(e.g. NabLab, SciPy, Julia)

Languages for scientific software 
(e.g. C++, Fortran)

We investigated the impact of language choice through the balance of
responsibilities between language users and language designers.

3 / 24



Balance of responsibilities: languages for mathematical models

Example languages
Mathematica, MATLAB

Balance of responsibilities

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Implementation
Testing

Unit & Integration Testing

Implementation

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

N SE

Model Testing
Acceptance Testing

Language users
Model testing to assess mathematical
model fidelity
Discretization testing on the derived
scientific software

Language designers

Discretization testing of the provided
continuous mathematical constructs
Software engineering V&V concerns
Providing tools for discretization testing

4 / 24



Balance of responsibilities: languages for scientific software

Example languages
C++, Fortran

Balance of responsibilities

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Implementation
Testing

Unit & Integration Testing

Implementation

Model Testing
Acceptance Testing

Discretization 
Testing

System Testing
Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

N SE

Language users
Software engineering V&V concerns
Implementation testing
Discretization testing
Model testing

5 / 24



Balance of responsibilities: languages for numerical schemes

Example languages
NabLab, Julia, SciPy, GNU Octave

Balance of responsibilities

Stakeholders 
Requirements

SE V-Model

Unit 
Testing

Integration 
Testing

System 
Testing

Acceptance
Testing

Detailed 
Design

Global 
Design

Software
Requirements

Implementation

Model Testing
Acceptance Testing

Mathematical Model

Observations

Numerical Scheme

Scientific 
Software 

S

S N

N SE

Discretization 
Testing

System Testing

Implementation
Testing

Unit & Integration Testing

Language users
Implementation testing
Discretization testing
Model testing

Language designers

Software engineering V&V concerns
Implementation testing of the provided
discrete mathematical constructs
Providing tools for implementation
testing

6 / 24



Example language for numerical schemes: NabLab

NabLab: Executable DSL (xDSL) for numerical analysis.

Abstract syntax: Metamodel reifying domain concepts, e.g.,
Matrices, vectors, scalars
Algebraic expressions over those
Mathematical functions
Iterative control structures

Operational semantics:
Metamodel defining model state during the execution
Set of execution rules ⇒ Interpreter

7 / 24



Example NabLab model: IterativeHeatEquation

Example NabLab model: Solving the heat equation with iterative numerical method.

Example invariant to check: residualn,k > residualn,k+1

8 / 24



Example NabLab model: IterativeHeatEquation

Example NabLab model: Solving the heat equation with iterative numerical method.

Example invariant to check: residualn,k > residualn,k+1

8 / 24



Example NabLab model: IterativeHeatEquation

Example NabLab model: Solving the heat equation with iterative numerical method.

Example invariant to check: residualn,k > residualn,k+1

8 / 24



Example NabLab model: IterativeHeatEquation

Example NabLab model: Solving the heat equation with iterative numerical method.

Example invariant to check: residualn,k > residualn,k+1

8 / 24



Example NabLab model: IterativeHeatEquation

Example NabLab model: Solving the heat equation with iterative numerical method.

Example invariant to check: residualn,k > residualn,k+1

8 / 24



Example NabLab model: IterativeHeatEquation

Example NabLab model: Solving the heat equation with iterative numerical method.

Example invariant to check: residualn,k > residualn,k+1

8 / 24



Debugging NabLab models

Available facilities:
Output capabilities ⇒ designed for production use, not debugging.

Interactive debugging ⇒ impractical for such highly iterative software.

Preferred approach:
I Logging and monitoring of domain-specific properties

(e.g., physics conservation laws, numerical invariants).

9 / 24



Logging and monitoring for xDSLs

General obstacles to domain-level logging and monitoring facilities for xDSLs:

Restricted DSL expressivity:
Introducing language constructs goes against SoC (e.g., printf, if)
Different expressivity than offered by the DSL might be required

Domain-specificness:
Cannot reuse libraries through domain concepts (e.g., Apache log4x)
Additional development costs for each DSL to support

10 / 24



Logging and monitoring complementarities

Logging and monitoring are often dependent on one another:
Monitoring can operate on derived data obtained through logging mechanisms
Logging can be triggered or altered upon (in)validation of monitored properties

Yet, obstacles prevent domain experts from leveraging these complementarities:
Requires DSL support for logging and monitoring frameworks
Requires domain-level interoperability between frameworks

11 / 24



Monilogging for xDSLs

Proposed solution: MoniLog
I Language-agnostic, unifying framework for runtime monitoring and logging

allowing to define loggers, runtime monitors and combinations of the two, a.k.a.
moniloggers.

12 / 24



Overview of the approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

Execution Platform

DSL Interpreter

Instrumentation 
Interface

13 / 24



Overview of the approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

MoniLog 
Language

<<conforms to >>

Monilogger

Execution Platform

MoniLog InterpreterDSL Interpreter

Instrumentation 
Interface

13 / 24



Overview of the approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

MoniLog 
Language

<<conforms to >>

Monilogger

EventEventEvent EventEventCondition EventEventAction

Execution Platform

MoniLog InterpreterDSL Interpreter

Instrumentation 
Interface

13 / 24



Overview of the approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

MoniLog 
Language

<<conforms to >>

Monilogger

EventEventEvent EventEventCondition EventEventAction

Execution Platform

MoniLog InterpreterDSL Interpreter

<<instruments>> <<depends on>>

Dynamic 
Pointcut 

Implementation

<<depends on>>

generate

Instrumentation 
Interface

13 / 24



Overview of MoniLog

A MoniLog specification allows to

define instrumentation-specific variables,

declare the execution events of interest,

register moniloggers to these events, which can
update instrumentation variables,
access the execution state of the running model,
evaluate expressions with languages available on the execution platform,
call various appenders (e.g., file, message queue, console),
start/stop moniloggers

14 / 24



Example use on NabLab

15 / 24



Example use on NabLab

residual decreases while
iterating over k

15 / 24



Example use on NabLab

residual decreases while
iterating over k

Initializing variable storing
value of previous residual

15 / 24



Example use on NabLab

residual decreases while
iterating over k

Initializing variable storing
value of previous residual

Declaring events
of interest 

15 / 24



Example use on NabLab

residual decreases while
iterating over k

Initializing variable storing
value of previous residual

Declaring events
of interest 

Checking the
invariant 

15 / 24



Example use on NabLab

residual decreases while
iterating over k

Initializing variable storing
value of previous residual

Declaring events
of interest 

Checking the
invariant 

Logging the values of interest 
and storing residual for next iteration 

15 / 24



Example use on NabLab

residual decreases while
iterating over k

Initializing variable storing
value of previous residual

Declaring events
of interest 

Checking the
invariant 

Logging the values of interest 
and storing residual for next iteration 

Resetting stored residual to 1.0
after each iteration over n 

15 / 24



Implementation – AspectJ

Applicable to Java-based interpreters
Non-intrusive w.r.t. language definition
Instrumentation interface = aspects weaved into the interpreter:

16 / 24



Implementation – Truffle language implementation framework

Applicable to languages with a Truffle-based interpreter (e.g., Python, R)
Can evaluate expressions in any language installed on the GraalVM
Instrumentation interface part of language definition:

17 / 24



Evaluation

Research questions:

RQ#1 How does the proposed approach allow to combine runtime monitoring and
logging to extract relevant data from running models?
I Answered through demonstration cases similar to the provided example.

RQ#2 How is the overhead induced by the approach affected by different scenarios?
I Answered through quantitative evaluation

18 / 24



RQ#1: Demonstration case (Coarsen Interval)

Log standard deviation of u n to
file at interval of 0.0001

When standard deviation less
than 0.2, increase interval to
0.01

I Derived data leveraged by
monitor

I Monitor affects logger behavior

19 / 24



RQ#2: Quantitative evaluation

Setup:
CPU: Intel® Core™ i7-9850H CPU @ 2.60GHz × 12
OS: Ubuntu 20.04.2, VM: GraalVM 21.1.0

Overhead induced by 3 MoniLog specifications over simulation times from 0.2 to 1.0

AspectJ:
baseline: from ≈42.6s to ≈134.89s
absolute: from ≈8.75s to ≈18.27s
relative: from ≈26% to ≈16%

Truffle:
baseline: from ≈10.21s to ≈29.76s
absolute: from ≈2.75s to ≈4.85s
relative: from ≈36.5% to ≈19.5%

I Suitable for debugging as absolute overhead reasonably low on shorter execution
times, and relative overhead decreases by 40 to 50% on longer execution times.

20 / 24



MoniLog for compiled DSLs (ongoing work)

Prerequisites:
MoniLog host language interpreter embeddable in target language
Extend code generators to generate model-specific instrumentation interface

The generated model-specific instrumentation interface is split between:
the target language of the DSL’s code generator, to expose runtime data and
events of the model, and
the host language of MoniLog, to execution events of the model from
moniloggers.

21 / 24



MoniLog for compiled DSLs (ongoing work)

NabLab 
Model

Generated C++ Code

Model-Specific
Code

MoniLog (C++)
Model-Specific Instrumentation Interface (C++)

Exposes scoped runtime data in Python module 
Wraps execution events with calls to MoniLog 

Embedded 
CPython 

Interpreter

Model-Specific Instrumentation Interface
(Python side)

Exposes call events (jobs and functions)
Exposes write events (local and global variables)

MoniLog 
(Python)

Moniloggers 
(Python)

GenericUser-defined Generated

dependency generation

22 / 24



Example use of Python-based MoniLog

23 / 24



Conclusion

High-level languages allow scientists and numerical analysts to focus on their area
of expertise and associated V&V concerns.
Designers of high-level languages must guarantee correctness and performance
of derived scientific software.
Designers must furthermore give tools to address the V&V concerns
corresponding to the level of abstraction of the language.
In the context of languages for numerical schemes such as NabLab,
MoniLog is particularly suited to this thanks to:

its combination of logging and monitoring,
its ability to use the best suited languages for the task (e.g., Python for data
analysis)

24 / 24



Thank you for your attention!

When Scientific Software Meets Software Engineering
Leroy, Dorian, Sallou, June, Bourcier, Johan, Combemale, Benoit Computer 2021

Monilogging for executable domain-specific languages
Leroy, Dorian, Lelandais, Benôıt, Oudot, Marie-Pierre, Combemale, Benoit In
Proceedings of the 14th ACM SIGPLAN International Conference on Software
Language Engineering 2021


