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Scientific software: what is it and why is it important?

Scientific computing
Use of advanced computing capabilities to solve complex problems, aiming to predict
the behavior or outcome of a system, man-made or otherwise.

Why is it important?
Aerospace engineering, mechanical engineering, material science, chemistry, medicine
and many more disciplines, but also...
Basis of scientific findings shaping policy regarding wicked problems such as
COVID-19 or climate change.
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Numerical Analysts
Software Engineers
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Scientists develop a mathematical model,
i.e. a continuous numerical model
(e.g. a system of integro-differential equations)
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Numerical analysts discretize the mathematical
model into a numerical scheme computing a
numerical solution given... 

discretization of the domain (e.g. space, time),
initial state (e.g. initial temperature), and
inputs from environment (e.g. rainfalls).
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Language matters! Power comes with responsibility!
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We investigated the impact of language choice through the balance of
responsibilities between language users and language designers.
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Balance of responsibilities: languages for mathematical models

Example languages
Mathematica, MATLAB
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Balance of responsibilities: languages for scientific software

Example languages
C++, Fortran
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Balance of responsibilities: languages for numerical schemes

Example languages
NabLab, Julia, SciPy, GNU Octave
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Example language for numerical schemes: NabLab

NabLab: Executable DSL (xDSL) for numerical analysis.

Abstract syntax: Metamodel reifying domain concepts, e.g.,
Matrices, vectors, scalars
Algebraic expressions over those
Mathematical functions
Iterative control structures

Operational semantics:
Metamodel defining model state during the execution
Set of execution rules ⇒ Interpreter
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Example NabLab model: IterativeHeatEquation

Example NabLab model: Solving the heat equation with iterative numerical method.

Example invariant to check: residualn,k > residualn,k+1
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Debugging NabLab models

Available facilities:
Output capabilities ⇒ designed for production use, not debugging.

Interactive debugging ⇒ impractical for such highly iterative software.

Preferred approach:
I Logging and monitoring of domain-specific properties

(e.g., physics conservation laws, numerical invariants).
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Logging and monitoring for xDSLs

General obstacles to domain-level logging and monitoring facilities for xDSLs:

Restricted DSL expressivity:
Introducing language constructs goes against SoC (e.g., printf, if)
Different expressivity than offered by the DSL might be required

Domain-specificness:
Cannot reuse libraries through domain concepts (e.g., Apache log4x)
Additional development costs for each DSL to support
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Logging and monitoring complementarities

Logging and monitoring are often dependent on one another:
Monitoring can operate on derived data obtained through logging mechanisms
Logging can be triggered or altered upon (in)validation of monitored properties

Yet, obstacles prevent domain experts from leveraging these complementarities:
Requires DSL support for logging and monitoring frameworks
Requires domain-level interoperability between frameworks
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Monilogging for xDSLs

Proposed solution: MoniLog
I Language-agnostic, unifying framework for runtime monitoring and logging

allowing to define loggers, runtime monitors and combinations of the two, a.k.a.
moniloggers.
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Overview of MoniLog

A MoniLog specification allows to

define instrumentation-specific variables,

declare the execution events of interest,

register moniloggers to these events, which can
update instrumentation variables,
access the execution state of the running model,
evaluate expressions with languages available on the execution platform,
call various appenders (e.g., file, message queue, console),
start/stop moniloggers
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Example use on NabLab

residual decreases while
iterating over k

Initializing variable storing
value of previous residual

Declaring events
of interest 

Checking the
invariant 

Logging the values of interest 
and storing residual for next iteration 

Resetting stored residual to 1.0
after each iteration over n 
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Implementation – AspectJ

Applicable to Java-based interpreters
Non-intrusive w.r.t. language definition
Instrumentation interface = aspects weaved into the interpreter:
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Implementation – Truffle language implementation framework

Applicable to languages with a Truffle-based interpreter (e.g., Python, R)
Can evaluate expressions in any language installed on the GraalVM
Instrumentation interface part of language definition:
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Evaluation

Research questions:

RQ#1 How does the proposed approach allow to combine runtime monitoring and
logging to extract relevant data from running models?
I Answered through demonstration cases similar to the provided example.

RQ#2 How is the overhead induced by the approach affected by different scenarios?
I Answered through quantitative evaluation
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RQ#1: Demonstration case (Coarsen Interval)

Log standard deviation of u n to
file at interval of 0.0001

When standard deviation less
than 0.2, increase interval to
0.01

I Derived data leveraged by
monitor

I Monitor affects logger behavior
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RQ#2: Quantitative evaluation

Setup:
CPU: Intel® Core™ i7-9850H CPU @ 2.60GHz × 12
OS: Ubuntu 20.04.2, VM: GraalVM 21.1.0

Overhead induced by 3 MoniLog specifications over simulation times from 0.2 to 1.0

AspectJ:
baseline: from ≈42.6s to ≈134.89s
absolute: from ≈8.75s to ≈18.27s
relative: from ≈26% to ≈16%

Truffle:
baseline: from ≈10.21s to ≈29.76s
absolute: from ≈2.75s to ≈4.85s
relative: from ≈36.5% to ≈19.5%

I Suitable for debugging as absolute overhead reasonably low on shorter execution
times, and relative overhead decreases by 40 to 50% on longer execution times.
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MoniLog for compiled DSLs (ongoing work)

Prerequisites:
MoniLog host language interpreter embeddable in target language
Extend code generators to generate model-specific instrumentation interface

The generated model-specific instrumentation interface is split between:
the target language of the DSL’s code generator, to expose runtime data and
events of the model, and
the host language of MoniLog, to execution events of the model from
moniloggers.
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MoniLog for compiled DSLs (ongoing work)

NabLab 
Model

Generated C++ Code

Model-Specific
Code

MoniLog (C++)
Model-Specific Instrumentation Interface (C++)

Exposes scoped runtime data in Python module 
Wraps execution events with calls to MoniLog 

Embedded 
CPython 

Interpreter

Model-Specific Instrumentation Interface
(Python side)

Exposes call events (jobs and functions)
Exposes write events (local and global variables)

MoniLog 
(Python)

Moniloggers 
(Python)

GenericUser-defined Generated

dependency generation

22 / 24



Example use of Python-based MoniLog

23 / 24



Conclusion

High-level languages allow scientists and numerical analysts to focus on their area
of expertise and associated V&V concerns.
Designers of high-level languages must guarantee correctness and performance
of derived scientific software.
Designers must furthermore give tools to address the V&V concerns
corresponding to the level of abstraction of the language.
In the context of languages for numerical schemes such as NabLab,
MoniLog is particularly suited to this thanks to:

its combination of logging and monitoring,
its ability to use the best suited languages for the task (e.g., Python for data
analysis)
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Thank you for your attention!

When Scientific Software Meets Software Engineering
Leroy, Dorian, Sallou, June, Bourcier, Johan, Combemale, Benoit Computer 2021

Monilogging for executable domain-specific languages
Leroy, Dorian, Lelandais, Benôıt, Oudot, Marie-Pierre, Combemale, Benoit In
Proceedings of the 14th ACM SIGPLAN International Conference on Software
Language Engineering 2021


