
Monilogging for Executable DSLs

Dorian Leroy1,2, Benoit Lelandais3, Marie-Pierre Oudot3, Benoit Combemale1,2,4,5

1Université de Rennes 1, 2Inria, 3CEA-DAM, 4CNRS, 5IRISA

Mardi 15 Juin 2021



Introduction – Logging and Runtime Monitoring

Analyzing complex or data-intensive behaviors requires insightful data
(e.g., software intensive systems, scientific computing).
Logging and runtime monitoring can be used to gather such data.
Most often used in an ad-hoc way through language constructs or
language-specific libraries.

I Acceptable when using GPLs, as they can address numerous concerns, less so
in the context of Domain-Specific Languages (DSLs).

1 / 15



Introduction – Executable DSLs

DSLs allow to bridge the gap between domain experts and software realizing their
models through:

a dedicated language reifying the concepts of a domain,
an ecosystem of tools for editing, manipulating and statically analyzing defined
models, and
the automated generation of artifacts from the models defined by stakeholders.

To enable dynamic analysis (e.g., interactive debugging) over its models, a DSL must
be made executable (i.e., an xDSL) by providing an execution semantics for it.

2 / 15



Introduction – Example xDSL: NabLab

mergesbody 
*

Job

Instruction

nablab (excerpt)

body 
*

jobs 
*

variables 
*

Module

function 
1

args 
*

FunctionCall

value 
1

varRef 
1

VarAssign

variable 
1

VarDec

body 
*

target 
1

LoopExpressionoperands 
2

Binary 
Expression

Unary 
Expression

index 
1

defaultValue 
1

target 
1

VarRef

name: String 
inType: Type 
outType: Type

* functions

name: String 
type: Type

Variable

Function

indices*1operand

Value

Variable

imports

Module.execute()

Job.execute()

Function.execute()

VarAssign.execute()

VarDec.execute()

Loop.execute()

Unary.eval()

Binary.eval()

VarRef.eval()

FunctionCall.eval()

name: String

name: String

model state

Execution Rules

3 / 15



Introduction – Example xDSL: NabLab

mergesbody 
*

Job

Instruction

nablab (excerpt)

body 
*

jobs 
*

variables 
*

Module

function 
1

args 
*

FunctionCall

value 
1

varRef 
1

VarAssign

variable 
1

VarDec

body 
*

target 
1

LoopExpressionoperands 
2

Binary 
Expression

Unary 
Expression

index 
1

defaultValue 
1

target 
1

VarRef

name: String 
inType: Type 
outType: Type

* functions

name: String 
type: Type

Variable

Function

indices*1operand

Value

Variable

imports

Module.execute()

Job.execute()

Function.execute()

VarAssign.execute()

VarDec.execute()

Loop.execute()

Unary.eval()

Binary.eval()

VarRef.eval()

FunctionCall.eval()

name: String

name: String

model state

Execution Rules

3 / 15



Introduction – Debugging NabLab Models

Available facilities:
Output capabilities ⇒ designed for production use, not debugging.

Interactive debugging ⇒ impractical for such highly iterative software.

Preferred approach:
I Logging and monitoring of domain-specific properties

(e.g., physics conservation laws, invariants on numerical scheme variables).

4 / 15



Introduction – Logging and Monitoring for xDSLs

General obstacles to domain-level logging and monitoring facilities for xDSLs:

Restricted DSL expressivity:
Introducing needed language constructs goes against SoC (e.g., printf, if)
Different expressivity than offered by the DSL might be required

Domain-specificness:
Cannot reuse existing libraries with domain concepts (e.g., Apache log4x)
Additional development costs for each DSL to support

5 / 15



Introduction – Logging and Monitoring Complementarities

Logging and monitoring are often dependent on one another:
Monitoring can operate on derived data obtained through logging mechanisms
Logging can be triggered or altered upon (in)validation of monitored properties

Yet, obstacles prevent domain experts from leveraging these complementarities:
Requires DSL support for logging and monitoring frameworks
Requires high abstraction-level interoperability between frameworks

6 / 15



Introduction – Monilogging for xDSLs

Proposed solution:
I Language-agnostic, unifying framework for runtime monitoring and logging

allowing to define loggers, runtime monitors and combinations of the two, a.k.a.
moniloggers.

7 / 15



Overview of the Approach



Overview of the Approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

Execution Platform

DSL Interpreter

Instrumentation 
Interface

8 / 15



Overview of the Approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

MoniLog 
Language

<<conforms to >>

Monilogger

Execution Platform

MoniLog InterpreterDSL Interpreter

Instrumentation 
Interface

8 / 15



Overview of the Approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

MoniLog 
Language

<<conforms to >>

Monilogger

EventEventEvent EventEventCondition EventEventAction

Execution Platform

MoniLog InterpreterDSL Interpreter

Instrumentation 
Interface

8 / 15



Overview of the Approach

generates

Executable DSL

Operational 
Semantics

Abstract 
Syntax

<<conforms to>>

Model

MoniLog 
Language

<<conforms to >>

Monilogger

EventEventEvent EventEventCondition EventEventAction

Execution Platform

MoniLog InterpreterDSL Interpreter

<<instruments>> <<depends on>>

Dynamic 
Pointcut 

Implementation

<<depends on>>

generate

Instrumentation 
Interface

8 / 15



The MoniLog Language



The MoniLog Language – Metamodel

event (excerpt)

expr. (excerpt)

action (excerpt)

actions 
1..*

parameters 
*

moniloggers 
*

appenders 
*

layouts 
*

value 
1

<<abstract>> 
Action

<<abstract>> 
Layout

monilog

<<abstract>> 
Event

-name: String

Variable

<<abstract>> 
Appender

variables 
*MoniLog 

Spec

<<abstract>> 
Expression

 conditions* 

<<abstract>> 
ParameterizedElement

 events* 

Monilogger
-name: String 
-active: Boolean 
-level: MoniloggerLevel

variables  
* 

Variable 
Value

 parameter1  defaultValue 
 0..1

-name: String

event 
1

 args* 

9 / 15



The MoniLog Language – Metamodel

monilog (excerpt)

event

instrumentation interface

language (excerpt)

rules 
*

Concept

<<abstract>> 
Event

UserEvent

-name: String

-before: Boolean
Execution 

Rule

concepts 1..* 

ExposedConcept

type 
1

ExecutionEvent

Execution 
EventType

 concept1 

rule   1

9 / 15



The MoniLog Language – Metamodel

instrumentation interface

language (excerpt)

rules 
*

Concept

Execution 
Rule

concepts 1..* 

ExposedConcept

Execution 
EventType

types 
1..*

 concept1 

Object

rule   1

expression (excerpt)
value 
1

args 
*

operands 
*

operand 
1

callable 
1

Language 
Call

parameter 
1

Variable 
Value

<<abstract>> 
Expression

LayoutCall Variable 
Reference

<<abstract>> 
BinaryExpression

<<abstract>> 
UnaryExpression

<<abstract>> 
AtomicExpression

Context 
Reference

target 
1

Variable<<abstract>> 
Layout

 target   1 layout   1
-name: String

monilog (excerpt)

args 
*

9 / 15



The MoniLog Language – Metamodel

event 
1

args 
*

<<abstract>> 
Action

Emit 
Event

<<abstract>> 
MoniloggerAction

UserEvent 
Occurrence

Appender 
Call

Start 
Monilogger

Stop 
Monilogger

action

event

UserEvent type 
1

<<abstract>> 
Appender

Monilogger

Variable 
Value

appender 
1

monilog (excerpt)

 target   1 

9 / 15



The MoniLog Language – Example

10 / 15



The MoniLog Language – Example

residual decreases while
iterating over k

10 / 15



The MoniLog Language – Example

Initializing variable storing
value of previous residual

residual decreases while
iterating over k

10 / 15



The MoniLog Language – Example

Initializing variable storing
value of previous residual

residual decreases while
iterating over k

Declaring events
of interest 

10 / 15



The MoniLog Language – Example

Initializing variable storing
value of previous residual

residual decreases while
iterating over k

Declaring events
of interest 

Checking the
invariant 

Logging the values of interest 
and storing residual for next iteration 

10 / 15



The MoniLog Language – Example

Initializing variable storing
value of previous residual

residual decreases while
iterating over k

Declaring events
of interest 

Checking the
invariant 

Logging the values of interest 
and storing residual for next iteration 

Resetting stored residual to 1.0
after each iteration over n 

10 / 15



The MoniLog Language – Semantics

Semantics of MoniLog formalized as a structural operational semantics, and
implemented in both AspectJ and Truffle.

At a glance:
A single event can trigger several moniloggers
A triggered monilogger executes fully before the execution resumes
When several moniloggers are triggered, they execute in arbitrary order

11 / 15



Implementation



Implementation – AspectJ

Applicable to Java-based interpreters
Non-intrusive w.r.t. language definition
Instrumentation interface = aspects weaved into the interpreter:

12 / 15



Implementation – Truffle Language Implementation Framework

Applicable to Truffle-based interpreters (e.g., JavaScript, Python, R)
Can evaluate expressions in any language installed on the GraalVM
Instrumentation interface part of language definition:

13 / 15



Evaluation



Evaluation
Setup:
CPU: Intel® Core™ i7-9850H CPU @ 2.60GHz × 12
OS: Ubuntu 20.04.2
VM: GraalVM 21.1.0
Preliminary results:

Interpreter Baseline Overhead Overhead
Execution Time (Console) (File)

Java-based ≈ 21s ≈ 3s / 12.5% ≈ 1s / 4.7%
Truffle-based ≈ 8s ≈ 3s / 37.5% ≈ 1s / 12.5%

Overhead Source Overhead Contribution
Handling prevResidual ≈ 0.5s
Logging to console ≈ 2.5s
Logging to file ≈ 0.5s

14 / 15



Conclusion



Conclusion

Conclusion:
We propose MoniLog, a new language to define moniloggers, i.e., a combination
of loggers and runtime monitors
Moniloggers are defined in a language-agnostic way, relying on an
instrumentation interface provided by DSLs
Running models are instrumented with moniloggers, allowing domain experts to
leverage the complementarities between logging and monitoring

Future work:
Monilogging for compiled DSLs
Polyglot editing support for language expressions

15 / 15


	Introduction
	Overview of the Approach
	The MoniLog Language
	Implementation
	Evaluation
	Conclusion

