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Introduction – Logging and Runtime Monitoring

Analyzing complex or data-intensive behaviors requires insightful data
(e.g., software intensive systems, scientific computing).
Logging and runtime monitoring can be used to gather such data.
Most often used in an ad-hoc way through language constructs or
language-specific libraries.

I Acceptable when using GPLs, as they can address numerous concerns, less so
in the context of Domain-Specific Languages (DSLs).
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Introduction – Executable DSLs

DSLs allow to bridge the gap between domain experts and software realizing their
models through:

a dedicated language reifying the concepts of a domain,
an ecosystem of tools for editing, manipulating and statically analyzing defined
models, and
the automated generation of artifacts from the models defined by stakeholders.

To enable dynamic analysis (e.g., interactive debugging) over its models, a DSL must
be made executable (i.e., an xDSL) by providing an execution semantics for it.
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Introduction – Example xDSL: NabLab
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Introduction – Debugging NabLab Models

Available facilities:
Output capabilities ⇒ designed for production use, not debugging.

Interactive debugging ⇒ impractical for such highly iterative software.

Preferred approach:
I Logging and monitoring of domain-specific properties

(e.g., physics conservation laws, invariants on numerical scheme variables).
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Introduction – Logging and Monitoring for xDSLs

General obstacles to domain-level logging and monitoring facilities for xDSLs:

Restricted DSL expressivity:
Introducing needed language constructs goes against SoC (e.g., printf, if)
Different expressivity than offered by the DSL might be required

Domain-specificness:
Cannot reuse existing libraries with domain concepts (e.g., Apache log4x)
Additional development costs for each DSL to support
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Introduction – Logging and Monitoring Complementarities

Logging and monitoring are often dependent on one another:
Monitoring can operate on derived data obtained through logging mechanisms
Logging can be triggered or altered upon (in)validation of monitored properties

Yet, obstacles prevent domain experts from leveraging these complementarities:
Requires DSL support for logging and monitoring frameworks
Requires high abstraction-level interoperability between frameworks
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Introduction – Monilogging for xDSLs

Proposed solution:
I Language-agnostic, unifying framework for runtime monitoring and logging

allowing to define loggers, runtime monitors and combinations of the two, a.k.a.
moniloggers.
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Overview of the Approach
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The MoniLog Language



The MoniLog Language – Metamodel
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The MoniLog Language – Metamodel
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The MoniLog Language – Metamodel
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The MoniLog Language – Metamodel
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The MoniLog Language – Example
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The MoniLog Language – Example
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The MoniLog Language – Semantics

Semantics of MoniLog formalized as a structural operational semantics, and
implemented in both AspectJ and Truffle.

At a glance:
A single event can trigger several moniloggers
A triggered monilogger executes fully before the execution resumes
When several moniloggers are triggered, they execute in arbitrary order
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Implementation



Implementation – AspectJ

Applicable to Java-based interpreters
Non-intrusive w.r.t. language definition
Instrumentation interface = aspects weaved into the interpreter:
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Implementation – Truffle Language Implementation Framework

Applicable to Truffle-based interpreters (e.g., JavaScript, Python, R)
Can evaluate expressions in any language installed on the GraalVM
Instrumentation interface part of language definition:
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Evaluation



Evaluation
Setup:
CPU: Intel® Core™ i7-9850H CPU @ 2.60GHz × 12
OS: Ubuntu 20.04.2
VM: GraalVM 21.1.0
Preliminary results:

Interpreter Baseline Overhead Overhead
Execution Time (Console) (File)

Java-based ≈ 21s ≈ 3s / 12.5% ≈ 1s / 4.7%
Truffle-based ≈ 8s ≈ 3s / 37.5% ≈ 1s / 12.5%

Overhead Source Overhead Contribution
Handling prevResidual ≈ 0.5s
Logging to console ≈ 2.5s
Logging to file ≈ 0.5s
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Conclusion

Conclusion:
We propose MoniLog, a new language to define moniloggers, i.e., a combination
of loggers and runtime monitors
Moniloggers are defined in a language-agnostic way, relying on an
instrumentation interface provided by DSLs
Running models are instrumented with moniloggers, allowing domain experts to
leverage the complementarities between logging and monitoring

Future work:
Monilogging for compiled DSLs
Polyglot editing support for language expressions
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